M1.(a) Line $x=-2$ drawn

Additional Guidance

Line does not need to be full length of grid.
Line can be solid or dashed.
(b) Line $y=x$ drawn

Additional Guidance

Line does not need to be full length of grid.
Line can be solid or dashed.
(c) Translation

Accept Translate

9 right and 8 down

$$
\text { or }\binom{9}{-8}
$$

Accept (9, -8)

Additional Guidance

$(y=-8, x=9) \quad$ is $\quad \mathrm{BOBO}$

M2.(a) $\quad \mathbf{b}-\mathbf{a}$ or $\mathbf{- a}+\mathbf{b}$
B2 if answer unsimplified
or
B2 for $\boldsymbol{b}-2 \boldsymbol{a}$ or $2 \boldsymbol{a}-\boldsymbol{b}$
or $\frac{1}{2}(2 b-4 a)$ or $\frac{1}{2}(4 a-2 b)$

B1 for 2b-4a or $\mathbf{4 a} \mathbf{- 2 b}$

Alternative Method

$\mathbf{b}-\mathbf{a}$ or $\mathbf{- a}+\mathbf{b}$
Midpoint theorem
B2 if answer unsimplified
or
$B 2$ for $-3 a+\frac{1}{2}(4 a+2 b)$
B1 for $\frac{1}{2}(4 a+2 b)$
(b) $\quad(\overrightarrow{M C}=) \mathbf{a}+2 \mathbf{b}-4 \mathbf{a}+\mathbf{b}$
oe

$$
\overrightarrow{M C}=3(\mathbf{b}-\mathbf{a}) \text { or } 3 \mathbf{b}-3 \mathbf{a}
$$

$M C$ is parallel to $M N$ and M is a common point
or $\overrightarrow{M C}=3 \overrightarrow{M N} \quad$ (must be vectors)
strand (iii) for both facts stated or vector statement

Alternative Method

$$
\begin{gathered}
(\overrightarrow{N C}=) \mathbf{b}-2 \mathbf{a}+\mathbf{b} \\
o e
\end{gathered}
$$

$$
\overrightarrow{N C}=2(\mathbf{b}-\mathbf{a}) \text { or } 2 \mathbf{b}-2 \mathbf{a}
$$

$N C$ is parallel to $M N$ and N is a common point
or $\overrightarrow{N C}=2 \overrightarrow{M N} \quad$ (must be vectors)
strand (iii) for both facts stated or vector statement
Q1
[6]

M3.(a) $\quad \mathbf{- a}+\mathbf{b}$ or $\mathbf{b}-\mathbf{a}$
(b) (Vector $A C=) 2.5(-\mathbf{a}+\mathbf{b}) o e$
or (vector $B C=$) $1.5(-\mathbf{a}+\mathbf{b})$
ft from their (a) provided it is a vector of the form ma $+n \mathbf{b}$
$\mathbf{a}+2.5(-\mathbf{a}+\mathbf{b})$
oe
or $\mathbf{b}+1.5(-\mathbf{a}+\mathbf{b})$
$-1.5 \mathbf{a}+2.5 \mathrm{~b}$ oe
Answer must be simplified

M4.(a) $\quad \mathbf{- p}(+) \mathbf{2 q - p (+)} 5 \mathbf{p}$ oe
(b) $q-\frac{1}{2} p$ or $-q+\frac{1}{2} p$
or $2 \mathbf{p}$ or $-2 p$
or $3 \mathbf{p}$ or $-3 \mathbf{p}$

$$
\frac{1}{2}(2 q-p) \text { or } \frac{1}{2}(p-2 q)
$$

$$
\begin{aligned}
& (\overrightarrow{M N}=) \quad \mathbf{q}-\frac{1}{2} \mathbf{p}+2 \mathbf{p} \\
& \text { or }\left(M N(\overrightarrow{M N}=)-2 \mathbf{p}-\mathbf{q}+\frac{1}{2} \mathbf{p}\right. \\
& \qquad \text { oe } \\
& \qquad(\overrightarrow{M N}=)-\mathbf{q}+\frac{1}{2} \boldsymbol{p}+\boldsymbol{p}+3 \boldsymbol{p}+2 \boldsymbol{q}-3 \boldsymbol{p} \\
& \qquad(\overrightarrow{N M}=) 3 \boldsymbol{p}-3 \boldsymbol{p}-2 \boldsymbol{q}-\boldsymbol{p}+\boldsymbol{q}-\frac{1}{2} \boldsymbol{p}
\end{aligned}
$$

$(\overrightarrow{M N}=) \mathbf{q}+\frac{3}{2} \mathbf{p}$
or $(\overrightarrow{N M}=)-\left(\mathbf{q}+\frac{3}{2} \mathbf{p}\right)$
oe
Must be fully simplified

$$
(\overrightarrow{M N}=)=\frac{1}{2}(2 \mathbf{q}+3 \mathbf{p})
$$

or $M N$ is a multiple / fraction of $C B$ (therefore parallel)
oe

$$
\begin{aligned}
& \overrightarrow{C B}=2\left(\boldsymbol{q}+\frac{3}{2} \boldsymbol{p}\right) \\
& \text { or } \frac{1}{2} \overrightarrow{C B}=\boldsymbol{q}+\frac{3}{2} \boldsymbol{p} \\
& \text { or } 2\left(\boldsymbol{q}+\frac{3}{2} \boldsymbol{p}\right)=2 \boldsymbol{q}+3 \boldsymbol{p} \\
& \text { or } \boldsymbol{q}+\frac{3}{2} \boldsymbol{p}=\frac{1}{2}(2 \boldsymbol{q}+3 \boldsymbol{p}) \\
& M N=\frac{1}{2} C B \text { or } C B=2 M N \\
& \text { or } C B: M N=2: 1
\end{aligned}
$$

